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Abstract

In the present numerical study the effect of constant transverse magnetic field on convection of low Prandtl number liquid metal rotat-
ing in a cubical cavity with an aspect-ratio of 8:8:1 has been investigated. The bottom wall is heated while the top-wall is cooled and all
the other walls are kept thermally insulated. The governing equations of mass, momentum, energy and magneto-hydrodynamic for a
frame rotating with the enclosure, subject to Boussinesq approximation applied to gravity and centrifugal force terms, have been solved
on a collocated grid using a semi-implicit finite difference method. The simulations have been carried out for liquid metal flows having a
fixed Prandtl number Pr ¼ 0:01, Rayleigh number Ra ¼ 107, and magnetic Prandtl number Pm ¼ 4:0� 10�4 while Chandrasekhar num-
ber Q varies from 5:0625� 104 to 1:21� 106 and non-dimensional rotation rate X is varied from zero to 105.

The increase in strength of transverse magnetic field (from Ql ¼ 5:0625� 104 to Qh ¼ 1:21� 106) till Q ’ Ta leads to slight increase in
convective heat transfer as well as formation of two-dimensional coherent structures aligned along the direction of magnetic field. For
cases pertaining to Q < Ta the two-dimensionality of the flow breaks down and the rolls distort in their alignment which leads to decrease
in magnitude of vertical heat transfer. For cases where Q� Ta, the increased Coriolis forces lead to generation of large-scale circulation
which forms a large cylindrical rotating column of fluid in consonance with Taylor–Proudman theorem. On increasing the strength of
magnetic field the component of rms velocity in the direction of magnetic field gets suppressed while there is increase in other two
components.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The turbulent Rayleigh–Bénard convection is primarily
due to the instability of Boussinesq fluid. The turbulent
convection with rotation is an important phenomena in
many industrial applications as well as in astrophysical
and geophysical flows. Further introduction of magnetic
field makes the flow more complex and can have profound
effect on the convection. In the present paper we focus on
the behavior of flow of an electrically conducting Bous-
sinesq liquid metal in a rotating rectangular enclosure
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heated from bottom while being subjected to an applied
magnetic field transverse to the temperature gradient.

The controlling non-dimensional parameters in rotating
magneto-convection are

� Rayleigh number Ra ¼ agH3
MT

mj is the ratio of buoyancy
forces to viscous forces and represents the driving force
of convection where a is the thermal expansion coeffi-
cient, g is the magnitude of the acceleration due to grav-
ity, m is the kinematic viscosity and j ¼ k=qcp is the
thermal diffusivity with the thermal conductivity k, den-
sity q and the specific heat capacity cp.

� Chandrasekhar number Q ¼ Ha2 ¼ rH2B2
�

q�m
is the square of

the Hartmann number Ha and represents the ratio of
Lorentz forces F L ¼ j� B, that are produced by the
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Nomenclature

B, L and H breadth, length and height of flow domain
(m)

g acceleration magnitude due to gravity (m/s2)
Nu spaced-averaged Nusselt number
Pr Prandtl number m=j
Ra Rayleigh number ðagH 3DT Þ=ðmjÞ
Raw ¼ ðX2

DHÞaH3
MT

mj
Q ¼ Ha2 Chandrasekhar number, rH2B2

�
q�m

Ta Taylor number,
X2

DH 4

m2

Pm Magnetic Prandtl number, m
mh

T dimensional temperature (K)
t non-dimensional time
T c initial fluid temperature (K)
V dimensional velocity vector (m/s)
u dimensionless velocity vector
u; v;w dimensionless mean velocities in x, y and z-

directions
X ; Y ; Z dimensional coordinate system (m)
XD dimensional angular rotation speed (rad/s)
B dimensionless magnetic field vector
j dimensionless current density

Cp specific heat at constant pressure J
kg K

Greek symbols

C ¼ L=H ¼ B=H aspect-ratio of enclosure.
H non-dimensional temperature, ðT � T cÞ=DT
H non-dimensional mean temperature
q� reference density of fluid (kg=m3)
Dt non-dimensional time-step
DT temperature difference between hot and cold

walls (K)
m kinematic viscosity (m2

s )
mh magnetic diffusivity (m2

s )
a coefficient of thermal expansion (K�1)
j thermal diffusivity (m2=s)
r electrical conductivity, ðohm�mÞ�1

Acronyms

CGSTAB conjugate gradient stabilized
RBC Rayleigh–Bénard convection
SOR successive-over relaxation
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interaction of the current density j with the magnetic
field B to the viscous forces. Here r is the electrical con-
ductivity, B� the magnitude of externally imposed mag-
netic field.
� Taylor number Ta ¼ X2

DH4

m2 is the squared ratio of Coriolis
forces to viscous forces. Here XD is the dimensional
angular velocity about the vertical axis.
� Rotational Rayliegh number Raw ¼ ðX

2
DHÞaH3

MT
mj which is

the ratio of rotational buoyancy (centrifugal force) to
viscous force.
� Prandtl number Pr ¼ m

j is the ratio of the viscous and the
thermal diffusion and characterizes diffusive properties
of the fluid.
� Magnetic Prandtl number Pm ¼ m

mh
is the ratio of the vis-

cous to the magnetic diffusion. The induced magnetic
will be small for lower value of Pm and larger for larger
value of Pm.
� Magnetic Reynolds number Rem ¼ Pm

Pr is the ratio of ther-
mal to magnetic diffusion. If Rem � 1, then the magnetic
diffusion is the dominant process and the magnetic field
distortion will be negligible. Thermal convection in the
bounded regions also depends on the aspect-ratio
C ¼ L

H ¼ B
H.

Some of the numerical and experimental works that
have been done till date to study the rotating or non-rotat-
ing magneto-convection in rectangular or cylindrical enclo-
sures are enumerated below.

Lehnert and Little [1] experimentally studied the effect of
inhomogeneity and obliquity of a magnetic field in inhibit-
ing convection. In their results they stated that when the
direction of imposed magnetic field is different from the
vertical, only the component of magnetic field in the direc-
tion of vertical is effective. Also for the case of horizontal
magnetic field, there is no discernible effect in inhibiting
convection even though the field was five times to that nec-
essary to suppress convection, if acting in the vertical direc-
tion. Moreover, the pattern of convective rolls is in the
form of elongated cells extending across the entire vessel
parallel to the magnetic field.

Ozoe and Okada [2] numerically studied the effect of the
direction of external magnetic field on natural convection
in a cubical enclosure. Three-dimensional conservation
equations for natural convection of molten silicon in a
cubical enclosure heated from one vertical side-wall and
cooled from an opposing wall are numerically solved under
three different external magnetic fields either in the x-, y-,
or z- directions for Ra ¼ 106 and 107, Ha ¼ 0� 500 at a
fixed Pr ¼ 0:054. They found that the external magnetic
field is most effective in suppressing the convection when
applied perpendicular to the heated vertical wall. It is least
effective when the magnetic field is horizontal and parallel
to the heated vertical wall.

Juel et al. [3] experimentally and numerically studied the
effects of a steady transverse magnetic field on side-wall
convection in molten gallium inside a rectangular cavity
of square cross-section with an aspect-ratio C ¼ l=h ¼ 4.
They found that the flow is restricted to two-dimensions
and the oscillations due to large temperature gradients
can be suppressed effectively by the magnetic field.

Ben Hadid and Henry [4] numerically studied the convec-
tion in a cubical enclosure under the action of imposed ver-



Fig. 1. Schematic diagram of geometry of the domain.
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tical and transverse magnetic fields in a 4� 1� 1 rectangu-
lar cavity with constant horizontal temperature gradient.
They found that in case of a vertical magnetic field at rela-
tively small Hartmann number Ha P 10, the magnetic field
is primarily associated with breaking of the average flow in
the melt, but at sufficiently large Ha P 100 the flow becomes
unidirectional over a large part of the cavity with a quiescent
core region surrounded at top and bottom by Hartmann
boundary layers and by parallel layers at the vertical side-
walls. For the case of transverse magnetic field they reported
a decrease in the vertical velocity, but only at larger values of
Ha, i.e. for Ha P 50 in comparison to the vertical magnetic
field ðHa P 10Þ. The comparison of the maxima of vertical
velocity indicates that the magnetic damping is most efficient
for the case of vertical magnetic field.

Aurnou and Olson [5] experimentally measured heat
transfer for liquid gallium ðPr ¼ 0:023Þ, subject to the com-
bined action of rotation and a uniform vertical magnetic
field in a rectangular cavity of size 15:2� 15:2� 3:8 cm.
They found that for rotating magneto-convection, the con-
vective heat transfer is inhibited by rotation for supercriti-
cal Taylor number Ta > 104.

Burr and Muller [6] studied the Rayleigh–Bénard con-
vection in a liquid metal layers under the influence of a hor-
izontal magnetic field. In their study they report that
vorticity lines tend to become aligned with the magnetic
field and due to this the flow properties like convective heat
flux are governed by opposing mechanisms of Julian dissi-
pation which tries to reduce convection and two-dimen-
sional coherent structures which promote convective heat
transport.

Most of the numerical and experimental works reviewed
above are concerned with the effect of magnetic field on
non-rotating convection except the work of Aurnou and
Olson [5]. The main aim of our study is to analyze the effect
of magnetic field and rotation, when applied orthogonal to
each other, on the dynamics of the flow and convection by
exploring the seven-dimensional parametric space on vary-
ing two independent parameters namely Ta and Q. Further,
we would like to investigate the formation of coherent
structures in rotating magneto-convection and how they
influence the heat and momentum transport. Besides this,
we also want to determine the effect of rotation with trans-
verse magnetic field on statistics of dynamical variables.

The present work involves a numerical study of three-
dimensional rotating magneto-convection in a moderately
large aspect-ratio (8:8:1) enclosure, rotating about a verti-
cal axis passing through its center of gravity. In Fig. 1 the
flow problem under consideration is sketched. Liquid
metal is confined in a rectangular enclosure with no-slip
boundary conditions applied at all the walls. The bottom
wall is heated and the upper one is cooled so that a tem-
perature difference DT with an associated heat flux q is
maintained across the gap. All other walls are thermally
insulated. A homogeneous magnetic field B in y-direction
is imposed in transverse direction to the applied tempera-
ture difference. The simulations have been carried out
for liquid metal flows having a fixed Prandtl number,
Pr ¼ 0:01, Rayleigh number, Ra ¼ 107 and magnetic
Prandtl number, Pm ¼ 4:0� 10�4 while Chandrasekhar
number Q and Taylor number Ta are varied through
dimensional rotation rate XD. To stringently maintain
the Bousinessq condition, the ratio of Raw

Ta is kept as 10�3

for all the simulations.
2. Mathematical model

The basic equations used in the simulation of rotating
flow subjected to magnetic field are the incompressible 3D
Navier-Stokes equations with inclusion of Lorentz, Coriolis
and rotational buoyancy (Centrifugal) forces, energy equa-
tion and the magneto-hydrodynamic equations. Boussinesq
approximation, i.e. linear variation of density with small
temperature difference has been considered for both the
gravity and centrifugal force terms [7,8]. The conservation
equations are made dimensionless using length scale ðHÞ,
time scale ðH 2=jÞ, velocity scale ðj=HÞ, pressure scale
ðqoj

2=H 2Þ, temperature scale ðH ¼ ðT � T cÞ=DT Þ and
ðm=H 2Þ scale for rotation rate. Using these reference scales,
the governing equations may be written as

Conservation of mass

r � u ¼ 0 ð1Þ

Conservation of momentum in rotating coordinate frame

ou

ot
þ u � ru ¼ �rp þ Prr2uþ ð2Ta0:5Prv� RawxPrHÞ̂i

þ ð�2Ta0:5Pru� RawyPrHÞ̂jþ RaPrHk̂

þ Pr2

Pm
Q½r � B� B� ð2Þ

Conservation of energy

oH
ot
þ u � rH

� �
¼ r2Hþ Q

Ra
Pr2

Pm

� �
agH

cp
ðr � BÞ2 ð3Þ



Table 1
Comparison of the maximum local velocities at Ra ¼ 102; Ta ¼ 102, and
Raw ¼ 106

Time
(t)

jumaxj jumaxj jvmaxj jvmaxj jwmaxj jwmaxj
Lee and
Lin [11]

Present
work

Lee and
Lin [11]

Present
work

Lee and
Lin [11]

Present
work

0.05 130.54 127.96 94.24 91.19 22.08 21.23
0.10 122.08 122.25 90.42 88.65 21.84 20.77
0.15 119.48 120.57 89.15 88.21 21.75 20.91
0.20 118.74 120.24 89.15 88.09 21.73 20.89
S.S. 118.56 120.15 89.08 88.06 21.73 20.89

Table 2
Comparison of the average Nusselt number at Ra ¼ 102; Ta ¼ 102, and
Raw ¼ 106 at the bottom heated wall

Time (t) Nu at x ¼ �0:5 Nu at x ¼ �0:5

Lee and Lin [11] Present work

0.05 4.773 4.525
0.10 4.182 4.026
0.15 4.020 3.955
0.20 3.971 3.934
S. S. 3.956 3.92
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Magneto-hydrodynamics

oB

ot
þ u � rB ¼ ðB � rÞuþ 1

Rem

r2B ð4Þ

Initially the fluid is supposed to be in the quiescent state
ðu ¼ 0; v ¼ 0; w ¼ 0Þ with respect to the rotating frame of
reference at isothermal conditions T ¼ T c, i.e. H ¼ 0. No-
slip conditions for velocity components at the solid bound-
aries, i.e. u ¼ v ¼ w ¼ 0 are enforced. The thermal boundary
conditions are oH=ox ¼ 0 at x ¼ 	L=2, oH=oy ¼ 0 at
y ¼ 	B=2, H ¼ 1 at z ¼ �H=2 and H ¼ 0 at z ¼ H=2. The
magneto-hydrodynamic initial conditions are taken as
By ¼ 1:0, Bx ¼ Bz ¼ 0, while the boundary conditions are

oBn=on ¼ 0

in order to satisfy continuity on the interface between the
fluid and the walls. The walls of the cavity are assumed
to be electrically insulated hence jn ¼ 0 at all the walls [9].

The non-dimensional heat transfer across the fluid layer
is given in terms of the space-averaged Nusselt number at
both the cold and hot walls has been calculated using the
relation

Nu ¼ � 1

L� B

Z L=2

�L=2

Z B=2

�B=2

oH
oz

� �
dxdy
3. Numerical scheme and validation

Eqs. (1)–(4) are solved in time using second-order expli-
cit Adam-Bashforth integration scheme. The convective
non-linear terms are discretized using Taylor-series based
upwind scheme. First-order accurate upwind scheme is
used at points adjacent to the domain boundaries while
third-order accurate upwind scheme is used in the interior
domain. Viscous and thermal diffusion terms as well as
pressure terms present in the momentum and energy equa-
tions are discretized using second-order accurate central
differencing scheme. The details of the numerical scheme
used to solve the equations has been explained in greater
detail in Nadeem and Baig [10].

We validate our numerical scheme with Lee and Lin [11]
for differentially heated rotating convection, initially with-
out considering magnetic field. The results obtained are
quite close to the one obtained by Lee and Lin [11] as
shown in Tables 1 and 2. We feel that our results on a sim-
ilar grid of 30� 30� 30 are more accurate, as the pressure
Poisson solver in our case is based on CGSTAB technique
while Lee and Lin [11] used SOR technique and hence had
to use a much higher residual norm of 10�4 compared to
our norm of 10�11. The above validation was to check
the efficiency of numerical scheme for rotating convection.
To check the accuracy of the scheme for solving magneto-
hydrodynamics equations, we also validate our results with
experimental results of Aurnou and Olson [5] for Rayleigh–
Bénard convection with vertical magnetic field. For a cubi-
cal cavity of aspect-ratio 6:6:1, using a coarse mesh of
31� 31� 19 at Ra ¼ 4� 104, Pr ¼ 0:023, Pm ¼ 1:5� 10�6
and Chandrasekhar number Q ¼ 1210, we found the mean
Nusselt number on both the walls ðNu ¼ 1:26Þ to be in
excellent agreement with experimental values of Nu ¼ 1:25.

Regarding grid independence, we simulated rotating
magneto-convection on a geometrical progression based
collocated grid of 141� 141� 61. We found that integral
parameters such as mean Nusselt number Nu changed by
less than 4% compared to the coarse grid. Moreover, the
global maximum velocities u, v and w changed by less than
4%. Hence in order to cut down the computational time,
we ran all our simulation cases on a comparatively coarser
grid of 71� 71� 31. The spacing of grid is based on geo-
metric progression series with the minimum grid spacing
being 0.005 near the boundary for all the spatial directions.
4. Results and discussion

The present study focuses on the combined effect of
transverse magnetic field and rotation on the flow dynam-
ics and heat transfer. To analyze the flow characteristics we
have performed eight numerical simulations by varying
Chandrasekhar number Q from 5:0625� 104 to
1:21� 106 for four rotational rates namely 0, 103, 5� 103

and 105 keeping Ra ¼ 107, Pr ¼ 0:01 and Pm ¼ 4� 10�4

as constant. The Taylor number Ta varies from 0 to 1010

corresponding to the rotational speeds. The rotational
Rayliegh number Raw is computed such that the ratio of
Raw
Ta remains constant as 10�3. This ratio stringently satisfies
Boussinesq approximation for all the eight simulations.
The value of Rayleigh number taken in our study is well
above the critical Rayleigh number, both for non-rotating
as well as rotating magneto-convection cases and this
ensures unstable convection. The results we obtain from
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simulations have been classified on the basis of either dom-
inance of Lorentz or Coriolis force. Broadly this yields five
cases satisfying three conditions namely Q > Ta, Q ’ Ta
and Q� Ta.

4.1. Spatial flow analysis

The transverse magnetic field produces strong anisot-
ropy which leads to tendency of vorticity lines to align with
Fig. 2. Streamline plots of (a) 3D flow structures for Q > Ta, Ql ¼ 5:0625� 10
(c) 3D thermal structures and (d) 2D thermal structures in central xz-plane.
the direction of magnetic field. For the first simulation at
lower magnetic field strength ðQ < TaÞ corresponding to
Ql ¼ 5:0625� 104 and zero-rotation, i.e. Ta ¼ 0, it is
observed that multiple small-size rolls in the transverse
plane perpendicular to the applied magnetic field (see
Fig. 2b) and there is a weak alignment of these rolls parallel
to the magnetic field (see Fig. 2a). The thermal field shows
multiple rising and descending isotherms weakly aligned
along the direction of magnetic field (see Fig. 2c and d).
4 and Ta ¼ 0, (b) 2D flow structures in central xz-plane. Isotherms showing
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As the strength of the magnetic field is increased such that
Qh ¼ 1:21� 106 and Ta ¼ 0, 5 large circular rolls stretched
in the direction of applied magnetic field are found as shown
in Fig. 3a and b. These rolls are representative of two-
dimensional coherent structures as reported in the findings
of Burr and Muller [6]. While the thermal structures (see
isotherms in Fig. 3c and d) with lower cutoff value of iso-
therms set at 0.5 show a number of rising and descending
plumes again aligned parallel to the magnetic field.
Fig. 3. Streamline plots of (a) 3D flow structures for Q > Ta, Qh ¼ 1:21� 106 a
3D thermal structures and (d) 2D thermal structures in central xz-plane.
For the case pertaining to Ql ¼ 5:0625� 104 and
Ta ¼ 106, there is formation of two large-rolls in the xz-
plane and the 3D-plot shows these rolls are weakly aligned
in the transverse y-direction. On increasing the strength of
magnetic field at same Ta, when the applied magnetic field
and Coriolis force are of comparable magnitude, i.e.
Q ’ Ta (Qh ¼ 1:21� 106, Ta ¼ 106), the dynamics of flow
changes such that the rolls observed for the previous case,
now split and form four large-rolls elongated in the direc-
nd Ta ¼ 0, (b) 2D flow structures in central xz-plane. Isotherms showing (c)
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tion of magnetic field (see Fig. 4a and b). It suggests that
the transverse magnetic field with comparable Coriolis
force leads to strong two-dimensional turbulence trans-
verse to the applied magnetic field. A similar phenomenon
is observed in thermal flow field as shown in Fig. 4c and d.
Here again the individual plumes found for the case Q > Ta
merge together to form two rising and two descending
large-size plumes which are elongated parallel to the direc-
tion of magnetic field.

When the Coriolis force is the dominant force, i.e.
Q < Ta, for the case Qh ¼ 1:21� 106 and Ta ¼ 2:5� 107,
Fig. 4. Streamline plots of (a) 3D flow structures for Q ’ Ta, Qh ¼ 1:21� 106 a
(c) 3D thermal structures and (d) 2D thermal structures in central xz-plane.
the strong two-dimensionality is broken by the Coriolis
force and the ensuing circulation skews the directional
alignment of rolls (see Fig. 5a) while in the transverse cen-
tral xz-plane larger number of rolls are generated as shown
in Fig. 5b. The thermal flow field shows two large-sized
ascending and two small-sized descending plumes as shown
in Fig. 5c and d.

When the rotation rate is increased to Ta ¼ 1010, i.e.
Q� Ta corresponding to Qh ¼ 1:21� 106 and Ta ¼ 1010,
the dominance of Coriolis force generates a strong circula-
tion which in turn forms a large cylindrical column of fluid
nd Ta ¼ 106, (b) 2D flow structures in central xz-plane. Isotherms showing



Fig. 5. Streamline plots of (a) 3D flow structures for Q < Ta, Qh ¼ 1:21� 106 and Ta ¼ 2:5� 107, (b) 2D flow structures in central xz-plane. Isotherms
showing (c) 3D thermal structures and (d) 2D thermal structures in central xz-plane.
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having its axis aligned parallel to the axis of rotation (see
Fig. 6a). The two-dimensional section of the same in the
horizontal xy-plane shows a large circular rotating roll
with four-small rolls near the corners (see Fig. 6b). The
thermal flow field as shown in Fig. 6c again depicts a large
ascending thermal structure possibly formed due to strong
circulation in the enclosure. It is observed that the effect of
centrifugal buoyancy is insignificant till Ta < 2:57 and only
at Ta ¼ 1010, Raw becomes equal to 107 and hence compa-
rable to Ra. The effect of centrifugal buoyancy is then to
generate or induce a strong large-scale circulation accom-
panied with strong Ekman pumping as is observed in
Fig. 6b and c. These findings are also in consonance with
rotating convection results of Hart and Ohlsen [12] and
Hart et al. [13] at high Taylor numbers.

4.2. Statistical flow analysis

The statistical analysis is a good tool to represent the
turbulence in the fluid flow. Statistical mean and first-



Fig. 6. Streamline plots of (a) 3D flow structures for Q� Ta, Qh ¼ 1:21� 106 and Ta ¼ 1010, (b) 2D flow structures in central xy-plane and (c) isotherms
showing 3D thermal structures.
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order moments of all the dynamical variables has been
obtained after spatial-averaging over horizontal planes
and then time-averaging for a sufficiently long-time till
statistically stationary state is achieved. The plots drawn
shows the variation of mean and rms values in the inho-
mogeneous vertical direction for all the cases of numeri-
cal simulation.

Fig. 7a and b shows the variation of mean velocity for
the case Q > Ta with increasing value of Q at constant
Ta. At lower magnetic field ðQl ¼ 5:0625� 104Þ, all
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Fig. 7. Variation of the mean velocities u, v and w at Ra ¼ 107: (a, b) for Q > Ta, with (a) at Ql ¼ 5:0625� 104 and Ta ¼ 0 and (b) at Qh ¼ 1:21� 106 and
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velocity component are of comparable magnitude, while
at higher magnetic field ðQh ¼ 1:21� 106Þ the horizontal
mean velocity u or <u> shows an anti-symmetric profile
about a zero-mean. The transverse mean velocity v or
<v> has negligibly small values due to magnetic field
applied in the same direction and the flow becomes
almost two-dimensional in x–z plane. On further increas-
ing Ta corresponding to ðQ < TaÞ, the magnitude of all
the velocity components show a small variation about a
zero-mean.

Fig. 8 shows the variation of rms velocities in the inho-
mogeneous direction between top and bottom walls of the
cavity. As the applied magnetic field is in the transverse
direction, the Lorentz force j� B components are larger
in the perpendicular directions, i.e. in x- and z-direction
and have anisotropic damping effects due to which unequal
variation of urms, vrms and wrms are observed in wall-normal
direction. For the case Q > Ta, Ql ¼ 5:0625� 104 and
Ta ¼ 0 (see Fig. 8a), the urms is suppressed less by induced
Lorentz force as compared to vrms especially near the hori-
zontal walls. In the bulk flow region both the horizontal
rms velocity components are of comparable magnitude
while the vertical rms velocity component is less affected
in this region. On increasing the strength of the magnetic
field ðQh ¼ 1:21� 106Þ at constant Ta (see Fig. 8b), the
rms velocity components in the x- and z- direction increase
to a considerable magnitude while the vrms is suppressed
almost four times.

At Q ’ Ta (see Fig. 8c), the behavior is same as in pre-
vious plots except the magnitude of vertical velocity w is
slightly larger. For Q < Ta, i.e. Ql ¼ 5:0625� 104 and
Ta ¼ 2:5� 107, the Coriolis force dominates the flow char-
acteristics. There is significant drop in urms and wrms due to
Coriolis forces, while vrms shows a significant jump. This
phenomenon implies that anisotropy induced two-dimen-
sionality of the previous cases gets broken up and the flow
field becomes three-dimensional. On increasing the mag-
netic field further (Qh ¼ 1:21� 106 and Ta ¼ 2:5� 107),
the urms and wrms increase again while vrms decreases, thus
implying that flow is reverting back to anisotropy induced
two-dimensional flow (see Fig. 8d and e).

The mean temperature H profile shown in Fig. 9a exhib-
its formation of thermal boundary layers near the solid
walls. The thickness of the thermal boundary layer near
the bottom wall increases as we increase the strength of
magnetic field though near the top-wall the thickness
decreases leading to higher thermal-gradients. The thermal
gradients are more influenced by the magnetic field than by
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Fig. 8. Variation of the root-mean-square velocities urms, vrms and wrms at Ra ¼ 107: (a, b) for Q > Ta, with (a) at Ql ¼ 5:0625� 104 and Ta ¼ 0 and (b) at
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the rate-of-rotation. The rms values for the temperature in
Fig. 9b show increasing magnitude of fluctuations with
increase in rate-of-rotation. While on the other hand
increasing magnetic field strength results in decrease of
fluctuations. High gradients of fluctuations are obtained
within the near-wall thermal boundary layers for all the
cases while in the bulk-flow region Hrms decreases till the
central plane (z = 0). These results suggest that with
increase of rotation the turbulence becomes more stronger
in the whole enclosure while increase of magnetic field
reduces turbulent thermal fluctuations.
4.3. Heat transfer analysis

To analyse the simultaneous effect of rotation and
transverse magnetic field on heat transfer, we computed
variation of space-averaged Nusselt number with time at
both the hot and cold walls. For non-rotating cases at
Q > Ta, from lower to higher values of Q there is a small
rise in magnitude of convective heat transfer, i.e. Nusselt
number with increasing magnetic field as shown in
Fig. 10a and b. This is most likely due to enhanced
transport of heat on formation of two-dimensional
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coherent structures (as seen in Fig. 3a and b) aligned
along the direction of applied magnetic field. This result
also supports the view of Lehnert and Little [1] that
transverse magnetic field do not suppress convection
and may even augment it. For the cases Ql ¼ 5:0625�
104 and Qh ¼ 1:21� 106 at Ta ¼ 106, i.e. Q ’ Ta,
Fig. 11a and b shows a slight increase in convective heat
transfer accompanied with larger fluctuations with the
increasing magnetic field. This is again due to formation
of aligned two-dimensional coherent structures at higher
magnetic field which promote enhanced vertical heat
transport.

On further increasing Ta such that Q < Ta, i.e. at
Ql ¼ 5:0625� 104 and Qh ¼ 1:21� 106 at Ta ¼ 2:5� 107,
the convective heat transfer compared to the previous
low-rotation cases decrease due to enhanced Coriolis forces
but there is slight augmentation with increasing magnetic
field at same Ta as can be seen in Fig. 11c and d. For both
lower and higher magnetic field strengths at highest rota-
tion rate Ta ¼ 1010, the convection is suppressed consider-
ably compared to the previous case due to large
magnitude of Coriolis forces and moreover the fluctuations
vanish leading to a steady-state convection as can be seen
in Fig. 11e and f.
4.4. Conclusions

Rotating Rayleigh–Bénard convection of an electrically
conducting fluid is significantly influenced by a uniform
horizontal magnetic field when applied perpendicular to
the vertical temperature gradient. The transverse magnetic
field tends to produce anisotropy in the flow field and at
sufficiently higher magnetic field strength Qh ¼ 1:21� 106

there is formation of two-dimensional coherent structures
elongated in the direction of magnetic field. This phenom-
enon of anisotropy induced two-dimensionality is main-
tained up-till a rotation rate such that Q ’ Ta, while
further increase in rotation breaks up two-dimensionality
due to enhanced circulation which distorts the alignment
of rolls. Further increase in rotation, results in large-scale
circulation which leads to formation of a cylindrical rotat-
ing fluid column aligned parallel to the rotation axis in con-
sonance with Taylor–Proudman theorem. The induced
Lorentz force occurs spatially such that vrms gets sup-
pressed considerably more on increasing strength of
applied magnetic field. This leads to strong two-dimension-
ality generating higher wrms and urms velocities. The convec-
tive heat transfer increases slightly with increase in
transverse magnetic field due to formation of heat trans-
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port enhancing coherent structures till Q ’ Ta. It is
observed that increase of rotation suppresses the convec-
tion due to enhanced Coriolis forces.
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